KENYA MARINE AND FISHERIES RESEARCH INSTITUTE DIGITAL LIBRARY
Normal view MARC view ISBD view

PCBs in fish and their cestode parasites in Lake Victoria

By: Oluoch-Otiego, J | Oyoo-Okoth, E | Kiptoo, K.G | Chemoiwa, E.J | Ngugi, C.C | Simiyu, G | Omutange, E.S | Ngure, V | Opiyo, M.A.
Material type: materialTypeLabelArticleSeries: Environmental Monitoring and Assessment 188 8483-. Publisher: 2016Subject(s): Bioaccumulation; Biomagnification Lake Victoria Lipid content PCBs ParasiteDDC classification: Online resources: Click here to access online
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
No physical items for this record

Polychlorinated biphenyls (PCBs) are classified as persistent organic pollutants (POPs) regulated by the Stockholm Convention (2001). Although their production and use was stopped almost three decades ago, PCBs are environmental persistent, toxic, and bioaccumulate in biota. We assessed the levels of 7 PCB congeners (IUPAC nos. 28, 52, 101, 118, 138, 153, and 180) in sediment and fish (Oreochromis niloticus, Lates niloticus, and Rastrineobola argentea) and evaluated the potential of cestode fish endoparasite (Monobothrioides sp., Proteocephalaus sp., and Ligula intestinalis) as biomonitors of PCBs in Lake Victoria, Kenya. The median concentration of Σ7PCBs in sediments and fish were 2.2-96.3 μg/kg dw and 300-3,000 μg/kg lw, respectively. At all the sampling sites, CB138, CB153, and CB180 were the dominant PCB congeners in sediment and fish samples. Compared to the muscle of the piscine host, Proteocephalaus sp. (infecting L. niloticus) biomagnified PCBs ×6-14 while Monobothrioides sp. (infecting O. niloticus) biomagnified PCBs ×4-8. Meanwhile, L. intestinalis (infecting R. argentea) biomagnified PCBs ×8-16 compared to the muscle of unparasitized fish. We demonstrate the occurrence of moderate to high levels of PCB in sediments and fish in Lake Victoria. We also provide evidence that fish parasites bioaccumulate higher levels of PCBs than their piscine hosts and therefore provide a promising biomonitor of PCBs. We urge further a long-term study to validate the use of the above cestode fish parasites as biomonitoring tools for PCBs.

There are no comments for this item.

Log in to your account to post a comment.